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ABSTRACT 
 

A simulation model of neighborhood crime rates and its estimation using data illustrate 
how a simulation model can be employed as a supplement to prose-style sociological 
reasoning and how the simulation model can be used as an estimation methodology that 
replaces the traditional method of specifying regression models with mixtures of system-
level and individual attributes as predictors. The core of the estimation framework is a 
generalization of the method of simulated moments (MSM) estimator of econometrics, 
which matches moments (i.e., expected values and variances) and a practical estimation 
methodology. A simulation meta-model giving the approximate relationship between 
model parameters and functions of the moments of model outputs, such as means and 
variances, is employed to calibrate the model to social data. The result is a simulation 
model-based replacement for the current paradigm for empirical sociological 
methodology that avoids reification and the ecological fallacy, which is applied to the 
estimation of a new model of neighborhood crime. 
 
Keywords: Crime, quantitative sociological methodology, method of simulated 
moments, simulation model calibration, simulation meta-modeling 

 
 

INTRODUCTION 
 

To play off the title of a famous book on statistics (Christensen 2002), statistical methods 
in the social sciences often consist of “plane answers to complex questions.” To answer 
questions about complex social phenomena, such as neighborhood crime rates, sociologists often 
commit the ecological fallacy by positing the reality of abstractions and then employing their 
measures in multiple regression models, which fit a hyperplane to the behavioral characteristics 
of a complex system. Usually these models pertain to a closely related group of dependent 
variables. These models are justified through discursive, philosophical-style social theory that 
makes ontological and behavioral claims about system dynamics and the relationship between 
the individual levels of analysis, but the degree of logical rigor achieved does not necessarily 
justify the epistemological claims made for the regression model specification. From the 
perspective of social simulation modeling, however, system models are available, and the 
question is one of choosing the right model, assessing where a candidate simulation deviates 
from validation data sets, and finding a good set of model coefficients in an efficient manner. 
 

Many have noted the discursive nature of sociological argument, either as a good thing 
(Sica 2004) or a shortcoming (Mahoney 2004). Computational social science is emerging as an 
alternative paradigm, but it is time to go beyond demonstrations of promise and develop 
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agent-based modeling as an alternative methodology on an equal basis to the traditional 
paradigms. Since quantitative sociological methodology operates by performing statistical tests 
on model parameters that are estimated from data, it is natural to wish to do the same thing with 
agent-based models and other social simulations. The process of theoretical development being 
considered here is to encode discursive theoretical arguments into agent-based models, and then 
evaluate their implications by executing the models. The next step is then to perform statistical 
tests on various model parameters, in order to test the theories under consideration. 
 

We approach the issue of estimating parameters in social simulation models as a problem 
of model calibration or validation, in which the model employs parameters that cannot be 
estimated by direct observation in the real world. In order to make the process of theoretical 
testing work well, however, methods of parametric hypothesis testing are needed for a broader 
range of models. This advance is achieved by employing simulation meta-modeling and response 
surface methodology as a method to achieve the matching of sample moments from simulation 
runs to empirical data, and by employing a jackknife estimator of the standard errors of the 
estimated parameters. The resulting methodology brings together elements of econometrics, 
operations research, and computational statistics in a new way that is computationally feasible 
and suitable for use as a quantitative social science methodology. 
 

In this paper, we showcase the methodology from a recent paper on crime in the 
sociological literature by Browning, Feinberg, and Dietz, to be referred to as BFD 
(Browning et al. 2004). Here we attempt to employ an agent-based model as a methodological 
improvement over the theoretical arguments and methodological approach of the subject paper, 
in which it is desired to substantiate a view of crime as occurring within a context of a network 
of social exchange relationships that tend to impede the suppression of crime. We consider a new 
agent-based model of neighborhood crime and apply the proposed methodology to reanalyze the 
data correlation matrix presented. 
 
 

SIMULATION MODEL ESTIMATION METHODOLOGIES 
 

The question of how to estimate the parameters of a simulation model, calibrate it, and/or 
validate it is not new. The case at hand is the presence of parameters (or processes) that are not 
directly observed in the data or that otherwise do not directly correspond to the observables, and 
the context is complex, stochastic simulations that are not susceptible to analytic 
(calculus-based) approaches. First we take a quick overview of the approaches that have been 
taken, and then we discuss the genealogy of the proposed methodology. 
 

The basic principle of simulation or parameter estimation from outputs is to match such 
things as means and variances of model outputs to data from a real system. The conventional 
economic methodology of deriving analytical results has been applied to agent-based economic 
models, such as the application to exchange rates by Alfarano et al. (2005). Axtell et al. (2002) 
performed a systematic search of an eight-dimensional parameter space in order to find a match 
to the archeological record of the Anasazi of Long House Valley, but this approach has 
exponential computational complexity. From the nonconvex optimization perspective, Gilli and 
Winker (2003) investigated a heuristic for matching the moments of an agent-based simulation 
model of exchange rates by refining a set of points in a three-dimensional parameter space that 
bracket the optimal solution. Many others have employed a variety of approaches to the 
optimization problem of finding optimal parameters for a process that is modeled by using 
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simulation. We now consider why the matching of simulation moments is also an econometric 
idea, and how to make it computationally feasible in the case of complex stochastic simulations 
through the application of simulation meta-modeling. 
 

The generalized method of moments (GMM) econometric estimation methodology 
(Hansen 1982) is a powerful methodology for estimating the coefficients for a wide variety of 
estimation problems. GMM is instructive in that it performs a match between features of a model 
and features of the data and then defines asymptotic standard errors for the resulting parameter 
estimates. Following the textbook by Mátyás (1999, Chapters 1 and 10), the basic approach is to 
define a continuous,  vector function  1×q
 

);(),(),( θσθ tttt zzysxf −=  
 
of a parameter vector, θ, and data vectors xt = (yt,zt):t = 1,...,T, where xt is divided into dependent 
variables yt and independent variables zt. We attempt to estimate θ0, the true value of θ, by using 
the moment conditions 
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A simple example of this is writing the mean and variance of X by using the notation of expected 
values and then subtracting their theoretical values, which are functions of θ. As we do not have 
these expected values, we employ instead the sample moments as a function of θ, 
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If there are q parameters to estimate, then the method of moments estimator is to solve the 
exactly identified system of equations, fT(θ) = 0, for TM in terms of the data. However, there are 
many possible moments from which to choose in this procedure. If there are fewer parameters to 
estimate than moment conditions, the problem is overidentified, and the GMM estimator defines 
a positive definite weighting matrix AT, from which we obtain 

θ̂
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a measure of the “distance” away from satisfying the moment conditions. Assuming, among 
other regularity conditions, that fT(θ) is continuously differentiable, the minimization of QT(θ) 
over θ yields the GMM estimator, , which is obtained via solving the first-order conditions. Tθ̂
 

For several varieties of complex econometric models, GMM estimation is 
computationally infeasible due to such problems as high-dimensional multiple integrals being 
required to compute the expected value of the dependent variable, as might be present as part of 
σ(zt; θ). The method of simulated moments (MSM), which originated with Pakes and Pollard 
(1989) and McFadden (1989), addresses this issue. MSM has also been suggested by Richiardi 
(2004) as an estimation methodology for agent-based computational economics. In MSM, one 
performs a simulation that generates estimates of σ(zt; θ), such as the natural Monte Carlo 
estimator based on a sample of size R, 
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where  is the r’th simulated value of . Then the MSM estimator  is obtained by 
minimizing the criterion,  
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where A is a positive definite weighting function and  
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This optimization is facilitated by the formation of a Monte Carlo estimate of the derivatives of 

);(ˆ θσ tR z with respect to θ, which may be readily available from the simulation as analytical 
derivatives conditional on the various pseudorandom number values.  
 

The MSM procedure does not quite fit the envisioned application on two counts. First, a 
correlation matrix is not a generalized moment, but a function of moments. Second, it is not 
suitable for the general social or agent-based simulation model in that the derivatives of 

);(ˆ θσ tR z are not necessarily available. While the former is accommodated in the discussion by 
Gelman (1995) by a modification to the normal equations, we address the latter through the use 
of least-squares models in order to estimate the relationships between the simulation parameters 
and the correlations or other features of interest. Using these relationships, or simulation meta-
model, we then find an approximate minimum of the criterion function. Here we apply least-
squares again to find the optimal set of parameters to minimize the “distance” between the 
simulation’s correlation matrix and the real-world one. This procedure thus creates a point of 
contact with the literature on response surface methodology (Kleijnen 1998; Myers and 
Montgomery 2002) and simulation optimization (Andradóttir 1998; Fu 2002). 
 

In outline, the approach proposed for agent-based modeling is as follows. For a model 
with Q parameters, define a set of N features, such as moments, functions of moments, and other 
definable functions of the model outputs that will be the basis of distinguishing good from poor 
models. The expected value of these should be a smooth function of the parameters, and their 
sampling variance should go down with sampling size. Then, running the model in M batches, 
collect the sets of feature vectors, si, i = 1,...,M. Using ordinary least-squares (OLS) or weighted 
least-squares (WLS), the regression equation for all feature vectors, consolidating  the simulation 
meta-models, is given in matrix-vector form as  
 

iii εbΘs += , 
 
where Θ is the M × (Q + 1) matrix of parameters by batch number, including a column of ones; 
each bi is a column vector consisting of Q coefficients plus an intercept term; and si is the 
M-vector of generalized moments of type i. At this point we check the meta-model with respect 
to the regression assumptions, such as linearity and homoscedasticity. It is also possible to 
perform multivariate regression tests of significance showing whether any of the features are 
affected by a given parameter (see Johnson and Wichern 1992, Chapter 7). 
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In aid of finding the desired estimates, define the concatenations of column vectors 
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Then the predicted values from the regression model are given by the NM × matrix, 
 

B̂ΘŜ = . 
 
We wish to find the values of θ that create the best fit to the actual feature data, s0.  is obtained 
by minimizing 

θ̂
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This is a regression equation, which is estimated by using least-squares. Here, roles are reversed 
as the matrix of estimates from the first phase is transposed to become the set of predictor 
variables and as the target features form the dependent variable vector. We can think of this 
regression as finding the maximum likelihood estimator of θ conditional on the estimate B̂  and 
assuming the accuracy of the meta-model for the relationship between the features and the 
parameters. From the perspective of inverse problem theory (Tarantola 2005), this regression is 
the solution to an inverse problem in which there is no prior information and the linear model is 
employed as an approximation to the parameter-data relationship. While inverse modeling is an 
established methodology in hydrology ⎯ as seen in Hill (1998) as well as Poeter and Hill 
(1998), for example ⎯ our setting has an additional complication in that the simulation model is 
stochastic. 
 

Note that the usual MSM approach calculates standard errors for the coefficients on the 
basis of the availability of an accurate derivative of the moment function conditional on the 
various random number instantiations that occurred in the simulation. We replace this derivative 
with a least-squares estimate, whose sampling error affects the standard error of the estimates in 
addition to the consequences of any lack of fit in the meta-models. 
 

As an alternative to an involved matrix formula for an asymptotic approximation to the 
standard error of the estimates, we consider utilizing the Quenouille-Tukey jackknife, whose use 
as a variance estimator is discussed in Efron and Stein (1981). The jackknife is a feasible and 
general-purpose method of conservatively estimating standard errors while also reducing 
estimation bias. To utilize the jackknife, form the pseudo-values 
 

NjNP jj ,,1for )ˆˆ)(1(ˆ K=−−+= −θθθ , 
 
where j− is the estimator of choice computed with observation j removed. In this case, the 
“observations” that are removed are one of the several generalized moments or features being 
matched and its associated regression coefficients. The observation thus deleted embodies the 
sampling error for the original data as well as the estimation error of the simulation meta-model 
coefficients for that parameter. The jackknife estimators of the mean and variance of the estimate 
are the mean of the Pj and the customary formula for the sampling variance of a mean: 

θ̂
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For simplicity, these are the equations for a single component of the estimate vector, but a 
covariance matrix of the estimates can also be computed in the usual fashion from the  as 
well. 

jP

 
 

NEIGHBORHOOD CRIME MODELING 
 
 
Theoretical Discussion 
 

In BFD’s review of the crime literature, it is clear that sociological theories of crime are 
based on hypotheses about social interactions in a neighborhood network. Not well-covered are 
economic theories of crime, such as rational choice theory (Becker 1968, and many others to 
follow) and the conception of peer effects as positive and negative externalities (Glaeser et al. 
1996; Calvó-Armengol and Zenou 2004), which are also relevant. 
 

Social disorganization theory (Shaw and McKay 1969; Kasarda and Janowitz 1974; 
Kornhauser 1978) views interpersonal social attachment as a good thing. According to Shaw and 
McKay, poverty, residential instability, and ethnic heterogeneity promote crime by inhibiting the 
formation of neighborly networks and attenuating community-level action against crime. 
According to Kasarda and Janowitz, extensive friendship and kinship bonds strengthen 
neighborhood attachment, and Kornhauser finds that weak bonds mediate the effect of 
disadvantage on the capacity for social control. 
 

The cultural transmission model (Whyte 1937; Wilson 1996; Crane 1991) focuses on the 
legitimate social networks as bulwarks against a counterculture of crime. The criminal subculture 
emerges in opposition to mainstream culture, and strong networks in socially disadvantaged 
communities may facilitate its spread. Thus, there is a contagion of problem behaviors, for which 
gang culture provides social support. 
 

BFD propose and empirically support a negotiated co-existence model, in which social 
networks are a source of general social capital for offenders, which tends to protect them. Thus 
the attitude of neighborly efficacy to fight crime tends to suppress criminal behavior but is offset 
to some degree by social capital. Thus, social disorganization theory is not quite right, but BFD 
wish to avoid attributing too much organizational capacity to the criminal networks as well. 
 

The economic literature on peer effects in crime is intriguing as a contrast because it is 
inherently agent-oriented. The analyses by Glaeser et al. (1996) and Calvó-Armengol and Zenou 
(2004) highlight the importance of heterogeneity in agents’ toleration for crime as a moderator of 
peer influence effects, which act as source of training and facilitation. The positive externalities 
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due to the interactions between criminals contrast with their aggregate competition for resources. 
These competing phenomena help explain the variability of crime rates across time and space. 
 
 
Critique of BFD’s Model 
 

BFD support the negotiated coexistence model by estimating a regression model by using 
data defined at the neighborhood level. In it, an interaction term between the level of the attitude 
of efficacy to fight crime and an attitudinal measure of network exchange shows up as a 
significant predictor of the crime rate. Individual-level attitude and household-level victimization 
data are aggregated into an area measure, by using hierarchical linear models to obtain empirical 
Bayes residuals as the dependent variable and main independent variables. This effectively 
partials out gender, age, race/ethnicity, education, employment status, marital status, years of 
residency, home ownership, and number of recent moves. The dependent variables are violent 
crime victimization (log odds) and the logarithm of the homicide rate. Control variables include 
measures of disadvantage, residential stability, population density, immigrant concentration, and 
the lagged homicide rate. Support is found for the negotiated coexistence model. 
 

BFD’s results may be critiqued in that using neighborhood-level data to support theories 
of agents in social networks succumbs to the ecological fallacy. Also, using attitudes as 
“independent variables” is questionable, since attitudes may be an accommodation to facts rather 
than their cause. Attitudes are clearly endogenous as a class, and there is always a question 
concerning the direction of causality. There is also the problem of completeness when reasoning 
in discursive ways. It is not always clear that the prose theory supports a certain sign of 
regression coefficient, since something may be left out of the reasoning.  
 

Building an agent-based form of the theory of crime has promise for addressing the issues 
that arise in the consideration of BFD’s analysis. By building the model at the agent level, the 
ecological fallacy can be avoided. By using an agent-based model to reason about the way in 
which different phenomena interact to produce an expected result, we avoid the problem of 
incomplete reasoning, although the problem may occur at a higher level in the form of the choice 
of models or perspective. Within the limits of causal reasoning, the endogeneity of attitudes can 
be addressed in an agent-based model by specifying path models with appropriate loops. 
 
 
Agent-based Model Development 
 

The model developed here and presented in Figure 1 incorporates a two-dimensional 
analogue of the circular social influence network considered by Glaeser et al. (1996), in which 
the features of nonhomogeneous occupational preferences and competition among criminals for 
scarce economic resources create a situation in which disparate equilibria are possible and the 
crime rate can vary significantly over time. In addition, it includes the interplay between the 
attitude of neighborly anti-crime efficacy and the behavior of being a criminal. 
 

Since neighborhoods are geographical, this model represents the attitudes and behavior of 
residents on a two-dimensional 50 × 50 lattice but uses the toroidal topology to avoid edge 
effects. In a real neighborhood, one has more than the eight neighbors present in many lattice 
models. Here we use the Moore neighborhood of radius 4, giving a set of 80 neighbors with  
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FIGURE 1  Path diagram of the agent-based model 
 
 
whom an agent may form friendships and by whom an agent may be influenced. However, the 
crime rate’s economic effect on occupational choice is taken over the entire set of 2,500 agents. 
 

In this model, agents may be either criminals or law abiding, and they possess a level of 
“efficacy.” Their underlying criminal propensities are heterogeneous within the neighborhood. 
Social influence is conveyed at three levels: friends, nonfriends in the Moore neighborhood, and 
the community as a whole. Agents may move out of the neighborhood and thus be immediately 
replaced. They also may change status between criminal and noncriminal and form friends. All 
friendships are two-way. 
 

In the blue boxes, Density, Stability, and Disadvantage are unit-free exogenous variables 
that drive residents’ Criminal Propensities, Efficacy, and Probability of Leaving, seen in 
parameters A1, A2, and D1. In the green diamonds are scale and location parameters related to 
these exogenous variables. Tenure is influenced by a yearly leaving probability that is derived 
from the stability parameter. Criminality is a choice that is initialized and then reviewed with 
probability B12. If it is to updated, the agent is a criminal according to a criminal propensity, 
which is heterogeneous between agents, as well as to the influences of friends and neighbors. In 
accordance with the peer effects literature, the global crime rate has a suppressing effect (AB4) 
on an individual’s propensity to choose criminality, while friends who are criminals have a 
separate effect (AB3). The value of efficacy used in the influence calculations depends on 
whether the person doing the influencing is a criminal, in which case the Criminal_Efficacy 
parameter is used. The effective efficacy of the other thus computed has two different effects 
(AB1 and AB2) on the other’s occupational choice, depending on whether the other is a friend or 
just a neighbor. The update of Efficacy is affected by the crime rate among the agent’s friends 
according to parameter D2, and their Efficacy according to parameter D3. Efficacy is also 
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influenced by tenure (D4) and density (D1). Finally, friendships grow with joint tenure, 
according to probability G1 each year. 
 
 
Implementation Details 
 

Each iteration of the simulation is nominally one year, during which each agent’s status is 
stochastically updated in fixed order: 

 
1. Moving out of the neighborhood, 
 
2. Building friendships (which accumulate), 
 
3. Deciding whether to reevaluate one’s occupation, and 
 
4. Updating attitude of efficacy. 

 
First it is determined whether the agent will leave on the basis of the tenure and 

stability-related calculations of the probability of leaving detailed above. The probability of 
leaving does not depend on the crime rate. If the agent leaves, it is replaced with a new agent; 
otherwise, the agent is updated. 
 

A new agent is given a criminal status and propensity according to the probability utilized 
in the initialization of criminal status, and it is given values of baseline efficacy, friendship 
probability, and friendship status according to the initialization procedure. The starting value of 
tenure is 1 year. 
 

An agent who does not move out of the neighborhood is influenced by the efficacy of 
both friends and nonfriends in his Moore neighborhood, but according to separate coefficients. If 
the other is a criminal, the effective efficacy is set at a parameter; otherwise, the effective efficacy 
is the actual efficacy. For both classes of Moore neighbors, the influence of the other on one’s 
own efficacy is on a per-agent basis, making influence of the two categories proportional to their 
numbers divided by the total number of Moore neighbors. 
 

The latent probability of becoming a criminal is the exp(x)/[1 + exp(x)] function of the 
sum of the agent’s criminal propensity and products of parameters with the efficacies of friends 
and nonfriends in the agent’s Moore neighborhood, as well as the crime rates among friends and 
globally. If a Bernoulli trial against the criminal status update probability is successful, criminal 
status is updated according to the latent probability.  
 

Friendship cumulatively increases, and new friends are added from the Moore 
neighborhood according to the friendship creation probability. Tenure is incremented by one 
each iteration. Efficacy is based on the baseline efficacy for the agent calculated at initialization, 
plus the products of parameterized coefficients multiplied by the friend crime rate, the friend 
efficacy, and tenure. 
 

One may comment on the model’s complexity. The path model implied by theory is 
fairly complex yet incomplete, and things had to be added. The effect of time on relationship 
building is common sense, but not explicitly stated as theory. Cognitive consistency theories 
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could be further exploited to suggest additional relationships between one’s own attitudes and 
own behavior. The model is also too simple in that there is no distinction between the rates of 
victimization and the populations of criminals. 
 
 
Model Parameterization 
 

Table 1 presents the 19 parameters corresponding to the path model in Figure 1 to 
describe the simulation process. In the path diagram, the prefix containing the affected node is 
omitted, but it is included here for clarity. 
 
 

DATA ANALYSIS 
 
 
Empirical Data Reanalyzed 
 

BFD report a correlation matrix of the data analyzed in their regression analyses, which 
form the feedstock for the demonstration of the proposed analytical method. The correlations 
reported by BFD and utilized in this paper are presented in Table 2. The correlations highlighted 
in orange are the exogenous variables. The presence of the 4-year lag of the crime rate gives us a 
reading on the level of consistency over time possessed by the phenomenon of crime, which is  
 
 

TABLE 1  Agent-based model parameters 

Number Name Type of Parameter 

 
What It Is 

Multiplied by What It Affects 
     

  1 pcriminal  Initial probability ----- Initial criminal status 
  2 CriminalPropensity_A0 Constant ----- Criminal Propensity 
  3 CriminalPropensity_AE Variability ----- Criminal Propensity 
  4 CriminalPropensity_A1 Coefficient Disadvantage Criminal Propensity 
  5 CriminalPropensity_A2 Coefficient Density Criminal Propensity 
  6 CriminalImpulse_AB1  Coefficient UnrelatedEfficacy CriminalImpulse 
  7 CriminalImpulse_AB2  Coefficient FriendEfficacy CriminalImpulse 
  8 CriminalImpulse_AB3  Coefficient FriendCrimeRate CriminalImpulse 
  9 CriminalImpulse_AB4  Coefficient CrimeRate CriminalImpulse 
10 Efficacy_D0  Variability ----- Efficacy (initial) 
11 Efficacy_D1  Coefficient Density Efficacy (initial) 
12 Efficacy_D2  Coefficient FriendCrimeRate Efficacy 
13 Efficacy_D3  Coefficient FriendEfficacy Efficacy 
14 Efficacy_D4  Coefficient Tenure Efficacy 
15 Criminal_Efficacy  Constant ----- Effective efficacy 
16 Criminal_B12  Update probability ----- Criminality 

17 Friend_G1  
Probability of 
Formation ----- Friendship 

18 Tenure_mean  Constant ----- Probability of Leaving
19 Tenure_std  Variability ----- Probability of Leaving
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TABLE 2  Correlations Reported by Browning et al. (2004) 
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Crime_Rate (Homicide) 1.00   
Disadvantage 0.76 1.00   
Residential_stability 0.04 0.05 1.00   
Density -0.03 0.08 -0.54 1.00   
Previous Crime_Rate (Homicide) 0.81 0.77 -0.06 0.09 1.00   
Collective_Efficacy -0.54 -0.56 0.38 -0.44 -0.60 1.00  
Network_Interaction -0.14 -0.13 0.05 -0.18 -0.13 0.47 1.00 
High_interaction -0.07 -0.02 0.08 -0.17 -0.07 0.36 0.75 1.00
High_interaction*Collective_Efficacy -0.30 -0.33 0.27 -0.26 -0.37 0.68 0.38 0.39 1.00

 
 
important with respect to the economic literature, as the level of instability has been the difficult 
part to explain. The means of the variables are not given. Many of the means and standard 
deviations are meaningless, since they are empirical Bayes residuals or attitude measures. 
 

Since they are survey estimates and the outcome of empirical Bayes purification, many of 
the subject variables are subject to estimation error themselves. This creates the problem of 
unmodeled measurement error in the predictor variables, which causes bias in the regression 
estimates. For the present purposes, it would also be helpful to have estimates of the reliability of 
the predictor measures.  
 
 
Simulation Model Data Collection 
 

Ecological data are collected from the 2,500 persons in the simulated neighborhood. 
After initialization, the model is executed for 20 iterations prior to the collection of the lagged 
log odds crime rate, and then executed for 4 more iterations prior to the collection of the rest of 
the data. Residential stability is collected as the mean of tenure (in simulation iterations). 
Network interaction is the mean of the friendship status. Efficacy is also the mean of this 
variable before its adjustment for criminal status. The log odds of the crime rate are estimated by 
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using an accommodation for the possibility of zero crime rates. The agent-based model was 
implemented in Matlab 5.3 (The Mathworks, Inc., 1999). 
 

Correlations of interest were calculated from batches of 30 independent model runs and 
used as data for the later method of simulated moments analysis. To achieve this, variables were 
calculated to support the interaction effects in the regression analysis BFD report. From the 
network interaction variable, the 70th percentile was calculated in order to create the indicator 
for high network interaction and thus its product with collective efficacy. 
 

The experimental design employed in data collection is to uniformly generate the 
simulation parameters within the upper and lower bounds determined by the experimenter. An 
initial set of test runs yielded a set of confidence bands, which were employed in the subsequent 
batch of data collection runs. A total of 117 batches were collected after the deletion of those 
with missing values due to taking the logarithm of zero. 
 
 
Data Analysis 
 
 
Statistical Procedures 
 

Standard tools of multivariate analysis and regression model checking are employed to 
estimate and assess the meta-models of correlations in the simulated data. SAS version 9 
(SAS Institute, Inc. 2002) was employed for the bulk of the post-simulation analysis, although 
the estimator was also implemented in Matlab (by using standard least-squares formulas taken 
from Judge et al. 1988). This being the first application of the application of meta-modeling to 
MSM, the difficulties encountered are instructive. Since correlations are the dependent variable 
in the meta-models, a transformation to correct heteroscedasticity was needed. Fisher (1915) 
suggests the 
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transformation, but this was modified to 
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in order to avoid difficulties with the logarithm of zero, which was encountered in some of the 
regressions. Other difficulties arise when not all of the correlations are predicted equally as well 
from the model parameters during the first least-squares estimation. This results in 
heteroscedasticity in the second phase regression, which is addressed by using a vector of 
weights calculated as the inverse of the residual variance estimates in phase 1. For this 
exploratory analysis, the standard errors are computed by using weighted least-squares 
regression rather than using the jackknife variance estimate. 
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Model Critique 
 
An advantage of the new methodology is its ability to assess whether model parameters affect 
the measurements being made. In this study, the first-stage regression analyses exhibited strong 
effects of some parameters on the sampled correlations, but not others, as determined by using 
multivariate tests of the parameters. High points of the significance parade include Efficacy_D1, 
which is the effect of density on efficacy, and Efficacy_D3, which is the effect of having 
criminals as friends on one’s feeling of efficacy. The mean and standard deviation of 
neighborhood stability (average tenure) also get high marks. Table 3 presents multivariate tests 
of the effects of the simulation parameters on the correlation statistics collected. Parameters 6–8 
of the simulation concern the effects of one’s efficacy and criminal behavior on another’s 
criminal behavior. A multivariate test that the correlations generated by the model were not 
related to these parameters rejected this null hypothesis with a statistically significant Wilks’ 
Lambda p-value. However, it seems surprising that so many of the parameters appear to be 
immaterial when examined in this fashion, although one can always look to increasing sample 
size. The one hoped-for lack of statistical significance is that of pcriminal, which is an 
initialization constant for agents, but this was marginally significant. 
 
 

TABLE 3  Multivariate tests of significance for model parameters 

 
Hypothesized 
Zero Effects Name 

Wilks’ 
Lambda FValue NumDF DenDF ProbF 

       
  1 pcriminal  0.536767 1.7 33 65 0.0343 
  2 CriminalPropensity_A0 0.651701 1.05 33 65 0.4198 
  3 CriminalPropensity_AE 0.625851 1.18 33 65 0.2826 
  4 CriminalPropensity_A1 0.763691 0.61 33 65 0.9391 
  5 CriminalPropensity_A2 0.736327 0.71 33 65 0.8626 
  6 CriminalImpulse_AB1 0.465699 2.26 33 65 0.0025 
  7 CriminalImpulse_AB2 0.370912 3.34 33 65 <.0001 
  8 CriminalImpulse_AB3 0.627128 1.17 33 65 0.2888 
  9 CriminalImpulse_AB4 0.495998 2 33 65 0.0086 
10 Efficacy_D0  0.595334 1.34 33 65 0.1569 
11 Efficacy_D1  0.234221 6.44 33 65 <.0001 
12 Efficacy_D2  0.572457 1.47 33 65 0.0923 
13 Efficacy_D3  0.387803 3.11 33 65 <.0001 
14 Efficacy_D4  0.527811 1.76 33 65 0.0259 
15 Criminal_Efficacy  0.599631 1.32 33 65 0.1719 
16 Criminal_B12  0.46647 2.25 33 65 0.0026 
17 Friend_G1  0.514365 1.86 33 65 0.0166 
18 Tenure_mean  0.347084 3.71 33 65 <.0001 
19 Tenure_std  0.409598 2.84 33 65 0.0002 

6 to 9 Influence_on_crime 0.065114 1.95 132 261.32 <.0001 
6 to 8 Interpersonal_Influence 0.119368 2.04 99 195.5 <.0001 
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The power of the meta-modeling approach is balanced by the need for model checking. 
Consider, for example, in Figure 2 (the residual plot versus the predicted values for w183), the 
transform of the correlation between residential stability and network interaction. There appears 
to be a curvilinear effect, which, however, is not the case universally, as seen in the residual plot 
for w117 in Figure 3 (the transformation of the correlation between density and collective 
efficacy). Here the plot is basically acceptable, except for some question about the narrowing of 
the residuals toward the right side boundary. The plots for the other variables show some 
combination of these issues as well. This indicates the need for an ad hoc approach to assuring 
that the statistical meta-model fits, rather than relying on an automated procedure. 
 
 
Estimated Model Parameters 
 

Table 4 shows the estimated model parameters from the method of simulated moments 
by using weighted least-squares. The parameter estimates and p-values show some 
disappointments and some surprises. The tolerance values are included as an indication of an 
identification problem. 
 

While most parameters are not statistically significant based on the estimated t statistic, 
three stand out as having statistics of greater than 2.5 in magnitude. Parameter 7, 
CriminalImpulse_AB2, which is the effect of the efficacy of friends on the agent’s criminal 
impulse, is positive, which is contrary to expectation. This might be explained by omitting the 
effect of behavior on attitudes in the path diagram, but it is not obvious how this explanation 
might apply in the current case.  
 
 

  

FIGURE 2  Residual analysis of the meta-model for w183 
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FIGURE 3  Residual analysis of the meta-model for w117 
 
 
TABLE 4  Regression results 

 Name 

 
Sampled 
Minimum 

Sampled 
Maximum

Parameter 
Estimate 

Standard 
Error t Value Pr > |t| Tolerance 

         
  1 pcriminal  -0.163 0.05 0.05817 0.2423 0.24 0.8137 0.04317 
  2 CriminalPropensity_A0 -2.85 1 -8.23298 5.40891 -1.52 0.1502 0.13064 
  3 CriminalPropensity_AE -4.63 1 3.96582 3.855 1.03 0.321 0.18601 
  4 CriminalPropensity_A1 0.0018 3.34 5.76952 2.73867 2.11 0.0537 0.13844 
  5 CriminalPropensity_A2 -3.05 1.87 12.10151 7.95447 1.52 0.1504 0.07677 
  6 CriminalImpulse_AB1  -1.09 2.46 0.67283 5.25193 0.13 0.8999 0.07619 
  7 CriminalImpulse_AB2  -9.83 34.1 70.94446 23.66379 3 0.0096 0.06765 
  8 CriminalImpulse_AB3  -0.0804 2.28 6.61994 2.28734 2.89 0.0118 0.41749 
  9 CriminalImpulse_AB4  -22 14.8 -48.5363 36.60198 -1.33 0.206 0.12967 
10 Efficacy_D0  -6.44 0.959 -4.32025 4.33556 -1 0.3359 0.04991 
11 Efficacy_D1  -1.51 1.4 -0.76677 0.99723 -0.77 0.4547 0.1348 
12 Efficacy_D2  -4.11 -0.0057 -2.6532 4.13226 -0.64 0.5312 0.12534 
13 Efficacy_D3  -2.88 1.98 3.80379 3.3113 1.15 0.2699 0.03767 
14 Efficacy_D4  -0.028 0.251 -0.4344 0.31996 -1.36 0.196 0.02597 
15 Criminal_Efficacy  -20.7 -0.0151 29.16331 15.13305 1.93 0.0745 0.08524 
16 Criminal_B12  -0.123 0.919 1.0151 0.77115 1.32 0.2092 0.14942 
17 Friend_G1  -0.001 0.335 0.61942 0.22094 2.8 0.0141 0.08399 
18 Tenure_mean  1.01 23.8 4.35497 12.99332 0.34 0.7425 0.05683 
19 Tenure_std  -1.99 0.991 0.04896 1.7355 0.03 0.9779 0.03722 
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Parameter 8, the effect of the crime rate among the agent’s friends on his own criminal 
impulse, also was estimated as being positive. However, the estimate is outside the range of the 
data, which was in part based on preliminary estimates based on the first 60 observations. 
Parameter 17, which is the rate of friend formation per year, was also outside the range of the 
data. Parameter 4, which is the effect of disadvantage on criminal propensity, was marginally 
statistically significant and positive. This is no surprise, but the estimate was also outside the 
range of the data. 
 

The tolerance values indicate an approximate lack of full rank in the parameter estimates 
from the meta-models, which may indicate an identification problem with regard to estimating 
the original path diagram by using the available correlations. As an alternative, we may consider 
the stepwise weighted regression results (using the default settings) from SAS Proc Reg 
presented in Table 5. 
 

As a subset of the original variables, the average criminal propensity, the effects of urban 
density and criminal friends on criminal propensity, the rate at which the criminal choice is 
updated, the probability rate of friendship formation, and neighborhood stability suffice to model 
the observed data as well as can be expected from the agent-based model developed here. 
Interestingly, it does not seem necessary to include the parameters associated with the particular 
interaction effect that was the centerpiece of the article by BFD. However, there is an issue with 
regard to the calibration of the time clock, as a mean neighborhood tenure of 35 years is too long, 
and a rate of friendship formation of 61% per year for the closest 80 neighbors seems high. 
 
 

DISCUSSION 
 

The application of simulation meta-modeling to estimate simulation parameters by using 
the MSM is feasible and scalable. With the methodology, it should be possible to extend 
agent-based models into the practice of quantitative sociological methodology by performing 
statistical tests of agent-based model parameters instead of regression parameters. The results of 
this approach are more accurate reasoning about the agents and activities reasoned about in 
substantive research. As befits a methodological pilot study, however, a number of critiques and 
research opportunities need to be addressed in further work. These issues are detailed below. 
 
 

TABLE 5  Trimmed regression results 

Number Name 

 
Parameter 
Estimate 

Standard 
Error T Value Pr > |t| Tolerance 

       
2 CriminalPropensity_A0 -5.11923 2.55393 -2 0.0551 0.6836 
5 CriminalPropensity_A2 10.84781 2.43872 4.45 0.0001 0.95291 
8 CriminalImpulse_AB3  3.78883 1.70443 2.22 0.0348 0.87717 

16 Criminal_B12  0.88839 0.36351 2.44 0.0213 0.78448 
17 Friend_G1  0.61142 0.0881 6.94 <.0001 0.61627 
18 Tenure_mean  35.42161 3.50078 10.12 <.0001 0.91326 
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There is much computational statistical work to be performed on the application of 
meta-models to MSM, including equations for the asymptotic variance matrix of the parameter 
estimates and simulation studies of the performance of the jackknife estimator and some 
alternatives. In this case study, a weighted least-squares estimate of the final parameters was 
employed as an approximation on the grounds that the meta-model is misspecified to some 
degree anyway. Another issue is the nonlinearity of some of the relationships between 
parameters and the generalized moments. While Fisher’s transformation helped, the one-size-
fits-all approach had its limits in terms of addressing heteroscedasticity and nonlinearity. A 
difficulty with estimating nonlinear relationships is inverting them to determine the final 
parameter estimates, which is possible, but not as easy as solving a regression equation. A related 
difficulty is that the meta-model did not predict all the correlations equally well. 
 

The agent-based model developed here had at its heart a path model of social influence. 
Any issue with such path models, such as identification, can be expected to present difficulties in 
this context as well. Further work with attitudes and behavior in relationship to crime would need 
to take care concerning model identification with respect to the underlying causal path model. 
The technique being explored here is not a substitute for collecting the right data and matching 
the right features of the data. 
 

Employing an agent-based simulation as a replacement for theory increases the precision 
of one’s arguments, but at a price. With the simulation, the domain of modeling concern 
increases as one examines the arguments and aligns the theory. Because of the increased rigor of 
this process, the need for elaboration is made clear beyond what was apparent from the prose 
expression of the theory. 
 

There are also additional substantive issues as well as issues with the simulation model 
that may be addressed. Calvó-Armengol and Zenou (2004) find that the equilibrium crime rates 
are sensitive to the geometry of the social network among criminals. Thus it is fair to ask how 
the social network assumptions made here affect the results. There is also a tendency for friends 
to be selected to match one’s choices, as can be seen in the case of adolescent sexual behavior 
(Billy and Udry 1985a,b). This may affect the friendship network insofar as influence effects are 
concerned. The current model has issues pertaining to the details of the simulation of friendship 
formation and the rate of leaving, which are a priority for model refinement. 
 

In this paper, we have considered MSM by using weighted least-squares as a 
methodologically superior alternative to ecological regression models and prose sociological 
theory, and we employed a recent sociological journal article on neighborhood crime rates as a 
case study. Although in using this case study, a number of methodological issues and areas 
where hand statistical labor is required arose, the theoretical advantages of the methodology and 
its basic practicality are an important forward step in sociological methodology. 
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